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This note first succinctly summarizes the currently available methods to solve the various
nonconvex free disposal hull (FDH) models for technical efficiency as well as for mini-
mum costs. It also offers some empirical illustration as to their computational efficiency.
Second, this note briefly points out that the recent article by Keshvari and Dehghan
Hardoroudi (2008) and its correction by Alirezaee and Khanjani Shiraz (2010) proposing
an extended enumeration method to solve for technical efficiency evaluated relative to
this family of FDH models contain no original results.
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1. Introduction

While convexity of technology is traditionally maintained in the non-parametric
approach to production theory (Afriat, 1972 or Diewert and Parkan, 1983), a non-
convex series of technologies and cost functions have been developed in the liter-
ature. This stream in the literature is known under the moniker free disposal hull
(FDH) models, a family of nonconvex variations on the more widely used convex
data envelopment analysis (DEA) models. A basic nonconvex FDH imposing the
assumptions of free (strong) disposal of inputs and outputs has probably first been
proposed in Deprins et al. (1984) (though Afriat (1972) already mentioned the single
output case).

*The most helpful comments of a referee are gratefully acknowledged. The usual disclaimer applies.
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Two extensions on this basic FDH model occurred in the literature. Firstly, spe-
cific returns to scale assumptions have been introduced into this basic model and a
new goodness-of-fit method to infer the characterization of returns to scale for non-
convex technologies has been proposed in Kerstens and Vanden Eeckaut (1999). Sim-
plifications in this goodness-of-fit method to characterize returns to scale have been
proposed in Soleimani-damaneh et al. (2006) and Soleimani-damaneh and Reshadi
(2007). Soleimani-damaneh and Mostafaee (2009) offer some stability intervals for
preserving the latter classification of returns to scale via a polynomial-time algo-
rithm based on the calculation of certain ratios of inputs and outputs. Second, these
nonconvex production models have been complemented by nonconvex cost functions
with corresponding specific returns to scale assumptions in Briec et al. (2004).

Obviously, apart from the above basic model extensions one can mention a whole
series of methodological refinements and variations that have been introduced in
the literature. Most often, these proposals are related to methods initially devel-
oped in a convex setting. First, Van Puyenbroeck (1998) introduced a nonconvex
super-efficiency model, while Sun and Hu (2009) compare in total three methods
(including super-efficiency) to discriminate among FDH-efficient observations. Sec-
ond, Mairesse and Vanden Eeckaut (2002) add lower and upper bound restrictions
to scaling on the nonconvex production models.* Third, already Tulkens (1993)
suggested a free replicability hull (FRH) by allowing for integer replications of all
observations (eventually complemented by upper bounds on the integer replication
process). This FRH is computationally quite challenging (see Ehrgott and Tind,
2009). Green and Cook (2004) alternatively defined a nonconvex technology con-
taining all observations as well as all composite observations obtained by simple
aggregation and call it a free coordination hull (FCH). This FCH can eventually
also be complemented by an upper bound on the number of observation being aggre-
gated. Fourth, given the potentially huge amounts of slacks and surpluses associated
with traditional radial efficiency measures in FDH models, non-radial efficiency mea-
sures have been evaluated and found particularly relevant in the basic FDH model
by De Borger et al. (1998). Finally, some studies have introduced specific models
to cope with various measurement scales. For instance, Jahanshahloo et al. (2004)
develop proper nonconvex models to handle interval data, while Triantis and Girod
(1998) offer a fuzzy mathematical programming approach to measure technical effi-
ciency when production plans are fuzzy (not crisp) for the basic FDH model. There
are also some models that are harder to classify: for instance, following Podinovski
(2005), Leleu (2009) proposes new formulations combining aspects of convex and
nonconvex production models alike for all returns to scale assumptions. Obviously,
this is but a selective sample of nonconvex model extensions currently available in
the literature.

2Bouhnik et al. (2001) earlier developed lower bound restrictions on the intensity variables to
avoid unreasonable optimal solutions that are compatible with both convex and nonconvex models,
though these authors only elaborate on the convex case.
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Though it is clear that these nonconvex technology and cost models are nowhere
as popular as their convex counterparts, a rather substantial amount of studies have
employed the basic FDH model and its extensions. A selective series of examples
include: Alam and Sickles (2000) study the dynamics of technical efficiency (TE)
following the deregulation of the US airline industry; Walden and Tomberlin (2010)
compute convex and nonconvex plant capacity estimates in fisheries; De Witte and
Marques (2011) explore scale economies in nonconvex technologies; Cummins and Zi
(1998) contrast convex and nonconvex estimates of TE and cost functions; Deste-
fanis and Sena (2005) investigate productivity change using nonconvex technolo-
gies etc.

A major point is that the results of nonconvex technology and cost models
are often very different from their convex counterparts. It is well-known that non-
convex technology models yield lower inefficiency levels and larger amounts of effi-
cient observations compared to convex models. For instance, Walden and Tomberlin
(2010) obtain mean plant capacity estimates that vary between 52% and 84% in the
convex and the nonconvex case, respectively. Needless to say that such differences
have potentially huge implications when designing policies to combat overcapacity
in fisheries. Perhaps more importantly, the seminal article of Briec et al. (2004)
and the study of Cummins and Zi (1998), for example, report diverging convex and
nonconvex cost estimates: from the latter study, one can infer that convex cost esti-
mates are on average a staggering 49.46% below the nonconvex ones (under variable
returns to scale).

Given these substantial empirical differences and the fact that the convexity
axiom can only be justified in terms of time-divisibility (ignoring any setup times,
but also ignoring indivisibilities, increasing returns to scale, positive or negative pro-
duction externalities, etc. that each can lead to nonconvexity) and is thus chiefly
maintained for analytical convenience (Hackman, 2008), one may wonder why these
methods are relatively speaking still so little used in economics and related dis-
ciplines. Note that in engineering certain production processes are known to be
inherently nonconvex and/or nonlinear and requiring appropriate models. A case
in point is the so-called economic dispatch problem minimizing total fuel costs of
electricity generation subject to various unit and system constraints (some recent
examples include Ravi et al., 2006; Park et al., 2010; Tsai et al., 2011).

Why is this evidence from one discipline ignored in other parts of the literature?
One main reason may be the desire for theoretical consistency related to the fact
that the main duality relations in economics linking production and cost approaches
presume convexity (Hackman, 2008). Another reason is simply computational: non-
convex production and cost models are more difficult to solve. The latter is exactly
the reason why we think it is time to take stock of the currently available solution
methods.

The purpose of this short note is twofold. First, it reviews and clarifies the avail-
able solution methods to solve radial measures of TE and cost functions relative
to these various FDH models and offers some illustration as to their computational
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efficiency. Second, it makes a few critical comments by pointing out that some arti-
cles in this journal as well as some others do not contain new results. In particular,
the articles by Keshvari and Dehghan Hardoroudi (2008) and the ensuing correction
by Alirezaee and Khanjani Shiraz (2010) develop an extended enumeration method
to compute radial TE measures with respect to FDH models with various returns
to scale assumptions. However, these enumeration methods have all been presented
in earlier publications.

This note is structured as follows. Section 2 introduces in detail the definitions of
the FDH technologies with various returns to scale assumptions and briefly indicates
the corresponding cost functions. The next Sec. 3 reviews the existing solution
methods for computing efficiency measures and cost functions relative to these
nonconvex technologies. Then, we illustrate the time gains when using implicit
enumeration relative to the use of linear programming. A final section concludes.

2. FDH Technologies and Cost Functions: Definitions

Denoting an n-dimensional input vector (z € R’} ) and an m-dimensional output
vector (y € R), the set of production possibilities or technology S is defined
as follows: S = {(z,y) € RY™™ : 2 can produce y}. The input set related to this
technology S contains all input vectors x capable to produce a certain output vector
y: L(y) = {zx € R} : (z,y) € S}.

The radial input efficiency measure can be defined as:

DF;(x,y) =min{\: A >0, \z € L(y)}. (1)

Its main properties are: (i) 0 < DF;(x,y) < 1, with efficient production on the
boundary (isoquant) of L(y) represented by unity; (ii) it has a cost interpretation
(for instance, Hackman, 2008). Turning to a dual representation of technology, the
cost function defines the minimum costs to produce an output vector y given a
vector of semi-positive input prices (w € R} ):

Cly,w) =min{w -z :x € L(y)}. (2)

A unified algebraic representation of convex and nonconvex technologies under
different returns to scale assumptions for a sample of K observations is (Briec et al.,
2004):

K K
AT — {(x7y) x> kadzk,y < Zyk§zk7zk eNode F}, (3)

k=1 k=1
where
(i) T=TBS ={5:6 >0}
(i) T =TNPRS = {§5:65 > 1};
(i) T=TNRS = (5:0< 6 <1}
(iv) T=TVBS ={5:§=1}; and
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(i) A=AC = {Zi{:l zr =1and 2z, > 0} and
(i) A=ANC = {°F 2 =1and z, € {0,1}}.

There is one activity vector (z) operating subject to a convexity (C) or nonconvex-
ity (NC) constraint and a scaling parameter (J) allowing for a particular scaling
of all K observations determining the technology. This scaling parameter is free
under constant returns to scale (CRS), smaller than or equal to one or larger than
or equal to one under non-increasing returns to scale (NIRS) and non-decreasing
returns to scale (NDRS), respectively, and fixed at unity under variable returns to
scale (VRS). For reasons of space, the corresponding cost functions are not for-
mally defined, but these follow directly from minimizing costs (2) relative to these
technologies (3).

The advantages of this formulation are twofold. First, it provides a unified for-
mulation of all basic technologies under different returns to scale assumptions and
under both convexity and nonconvexity. Second, it has a pedagogical advantage in
that it clearly separates the role of the various assumptions in the formulation of
the technology. The restrictions on the scaling parameter (0) are directly related to
the definitions of the axioms on returns to scale in technologies (Hackman, 2008).
Equally so, the sum constraint on the activity vector z (i.e., constraint (A)) is
related to the convexity axiom (Hackman, 2008). This formulation therefore avoids
confusing statements that are abound in the DEA literature. For instance, the sum
constraint on the activity vector z (i.e., constraint (A®)) in the envelopment or
primal formulation is often called a “convexity constraint” under the VRS assump-
tion, while the CRS technology has no such constraint despite it maintaining the
convexity axiom (see, e.g., Cook and Seiford, 2009, pp. 2-3).

3. FDH Technologies and Cost Functions: Solution Methods

Starting our overview of the developments in solution methods to compute these
nonconvex FDH production models and their related cost functions, we first start
with the computational methods for obtaining the radial input efficiency measure
(1) and then discuss the methods to obtain the cost functions (2). Each time, we
first treat the traditional convex case followed by the less widely used nonconvex
case.

Computing the radial input efficiency measure (1) relative to convex technologies
in (3) requires solving a nonlinear programming problem (NLP) for each evaluated
observation. However, Briec and Kerstens (2006) show how this NLP can be trans-
posed into the familiar linear programming (LP) problem around in the literature
(Hackman, 2008).P

bBy substituting wj, = 6z in (3), one can rewrite the sum constraint on the activity vector.
Realizing that the constraints on the scaling factor are in fact integrated into the latter sum
constraint, the traditional LP appears (see Briec and Kerstens, 2006 Lemma 2.1 for details).
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For the nonconvex technologies in (3), nonlinear mixed integer programs
(NLMIP) must be solved in the initial formulation of Kerstens and Vanden Eeckaut
(1999). Three distinctive alternative solution methods have followed this initial state
of affairs. First, Podinovski (2004) reduces the computational complexity by refor-
mulating all these nonconvex technologies as mixed integer programs (MIP) using
a big M technique.® Second, starting from an existing LP model for the basic FDH
model with VRS (Agrell and Tind, 2001), Leleu (2006) takes this one step further by
formulating equivalent LP problems. Third, Briec et al. (2004) develop an implicit
enumeration strategy for all nonconvex technologies in (3) to obtain closed form
solutions. Briec and Kerstens (2006) refine this analysis and furthermore indicate
that the computational complexity of this enumeration is advantageous compared
to these previous proposals to use MIP or LP. Note that the use of enumeration for
the basic nonconvex FDH production model with VRS (i.e., constraints TVES and
ANC) has been around in the literature since quite a while (examples include Deprins
et al., 1984; Lovell, 1995; Tulkens, 1993, among others).d

Apart from the fact that the development of both the MIP approach and the
enumeration approaches for these nonconvex technologies coincide temporally while
the LP approach has come next, it is immediately clear that the Keshvari and
Dehghan Hardoroudi (2008) and Alirezaee and Khanjani Shiraz (2010) articles are
preceded by both Briec et al. (2004) and Briec and Kerstens (2006) articles in
terms of the development of implicit enumeration algorithms. While the Keshvari
and Dehghan Hardoroudi (2008) article cites the Tulkens (1993) article as an early
precursor and fundamentally starts of from the Leleu (2006) article to derive its
extended numeration methods, this article ignores the fact that Leleu (2006, p. 341)
explicitly cites the existence of the implicit enumeration algorithms in Briec et al.
(2004).¢ Therefore, it is not surprising that the Keshvari and Dehghan Hardoroudi
(2008) article reports results that have been earlier published in Briec et al. (2004)
and Briec and Kerstens (2006). To be precise, apart from some minor and obvious
notational differences, the key results in Keshvari and Dehghan Hardoroudi (2008,
Theorem on p. 693) correspond to the results in Briec et al. (2004, Proposition
2), apart from the NDRS case (i.e., constraint TNPRS) which has been established
in Alirezaee and Khanjani Shiraz (2010, p. 608) but which coincides again with
Briec et al. (2004, Proposition 2).

Turning to the computation of the cost function (2) relative to convex non-
parametric technologies, it is well-known that this involves solving one LP per
observation being evaluated (Hackman, 2008). Jahanshahloo et al. (2007b, 2008)
simplify these LP formulations by cutting down on the amount of constraints and

¢The general difficulty of obtaining a good choice of big M is well-known (Camm et al., 1990).
dThis is also acknowledged in the Keshvari and Dehghan Hardoroudi (2008) article.

®Leleu (2006, p. 341) states: “There are two computational methods used to solve the FDH models.
The first one is based on enumeration algorithms as proposed by Tulkens (1993), Cherchye et al.
(2001) or Briec et al. (2004). The second one is the use of mathematical programming.”
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decision variables. Jahanshahloo et al. (2007a) develop cost efficiency (CE) models
for the particular case of ordinal data.

For the cost functions (2) relative to the nonconvex technologies in (3), Briec
et al. (2004) develop implicit enumeration algorithms (Proposition 3). Later
on, Leleu (2006) offers an LP solution related to the LP formulations of the relevant
technologies discussed supra. Paryab et al. (2012) reduce the complexity of these
LP formulations of FDH-CE with various returns to scale axioms by reducing both
the number of constraints and decision variables.! Finally, Mostafaee (2011) devel-
ops bounds on nonconvex revenue (and by extension cost) functions for the case of
imprecise data without solving any LP.

This terminates our brief history of the developments in computing nonconvex
FDH models of production and cost in the OR as well as the economics literature.
The relative merits of using an enumeration versus an LP approach in noncon-
vex models when computing TE have been discussed in Briec and Kerstens (2006,
pp. 143-144). While the number of arithmetic operations for enumeration is about
O(LK (n+m)?), with L a measure of data storage for a given precision, an LP has
a O(Lr?) polynomial time complexity for r variables, whereby we assume the use of
the most successful interior point method so far available (i.e., primal-dual Newton
step interior point method).

We now turn to a simple empirical illustration documenting the computational
gains of implicit enumeration compared to LP and MIP approaches.

4. LP and MIP Versus Enumeration Methods: An Illustration

The sample is taken from the Journal of Applied Econometrics Data archive to guar-
antee duplication purposes.® The sample from the Atkinson and Dorfman (2009)
article contains monthly data for several years on 16 hydro-electric power plants in
Chile. Focusing on the single year 1997, we ignore technical change by specifying an
inter-temporal frontier, which results in 192 (= 12 x 16) observations in total. The
single output is electricity generated and the three inputs are labor, capital and
water. Except for the input capital, all remaining flow variables are expressed in
physical units. There are also prices for these three inputs which are denominated
in current Chilean pesos. Basic descriptive statistics for the inputs and the single
output as well as more details on these data are available in Atkinson and Dorfman
(2009).

Computing TE (1) and the cost function (2) relative to the basic VRS FDH
model in (3) using implicit enumeration, LP and MIP yields the basic descriptive
statistics reported in Table 1. Note that it is well-known that TE relative to a convex

fIn fact, as pointed out by a referee it is trivial to show that the only contribution of Paryab et al.
(2012) is already found in Jahanshahloo et al. (2007b, Theorem 1: Part (iii)). However, the latter

article is regrettably ignored in the former article.
2See http://qed.econ.queensu.ca/jae/.
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Table 1. Nonconvex technical and
cost efficiencies.

TE CE
Average 0.9555 0.5789
St. deviation 0.1378 0.3565
Minimum 0.3154 0.0548
Maximum 1.0000 1.0000

technology is smaller or equal to the TE evaluated to a corresponding nonconvex
technology (i.e., DFC (z,y) < DENY(z,y)). It is equally obvious that the convex
CE estimate is lower or equal to its nonconvex counterpart (i.e., C¢(y,w)/w -z <
CNC(y,w)/w - ).

More important for our purpose, the CPU time in seconds for computing the TE
and cost function solutions using LP, MIP and implicit enumeration are reported in
Table 2. All computations are performed with the 64-bits version of Maple version
16 on a desktop computer with a 64-bit Intel Core Xeon processor running at
3.60 GHz. Table 2 lists the total time as well as descriptive statistics on the time
per observation. The differences in CPU time between the enumeration method and
the LP and MIP methods are substantial both at the sample level and for individual
observations.

Contrary to what one might expect, the LP method performs worse than the
MIP method despite Maple making use of an interior point method. The main
reason for this observation comes from the hugely sized LP model of Leleu (2006). To
compute TE for one observation, 2K decision variables (in casu 384) and (n+m)K
inequality constraints yielding slack variables (in casu 768) are needed leading to a
constraint matrix of dimensions ((n+m)K +1) x (n+m+2)K (in casu 769 x 1152)
compared to K + 1 decision variables (in casu 193) and m + n + 1 general linear
constraints (in casu 5) in the MIP model. In the cost function computations, this
even increases to (n + 2)K decision variables (in casu 960) and (n +m + 1)K
slack variables (in casu 960) in the LP model resulting in a matrix of dimensions
(n+m+1)K+1)x (2n+m+3)K (in casu 961 x 1920) contrary to K +n decision
variables (in casu 195) and n 4+ m + 1 general linear constraints (in casu 5) in the

Table 2. CPU time under LP, MIP and enumeration methods.

LP MIP Enumeration
TE C(y,w) TE C(y,w) TE C(y,w)
Total 78.9560 138.1039  4.1242 3.8838 0.1831 0.6364
Average 0.4112 0.7193  0.0215 0.0202 0.0010 0.0033
St. deviation 0.0247 0.0275  0.0035 0.0026 0.0004 0.0011
Minimum 0.3234 0.6535  0.0172 0.0164 0.0003 0.0026
Maximum 0.4642 0.7855  0.0328 0.0271 0.0049 0.0115
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Fig. 1. Kernel density estimates of CPU time for TE.

MIP model." Moreover, the MIP models only make use of binary integer variables
making the branch and bound tree rather simple.

To better appreciate the results, Fig. 1 plots kernel density estimates of CPU
time for TE using LP, MIP and enumeration: clearly the entire distribution for
enumeration is situated way below the distributions for LP and MIP and has much
smaller variation. For the cost function estimates, a figure with a similar basic shape
results (not displayed).

5. Concluding Comments

This short note has offered a succinct taxonomy of methods available in the eco-
nomics and OR literatures to solve the various FDH models for TE as well as
for minimum costs. It thereby has pointed out that the Keshvari and Dehghan
Hardoroudi (2008) article and the ensuing correction by Alirezaee and Khanjani
Shiraz (2010) do not contain new results. An empirical illustration underscored the
very substantial computational gains of implicit enumeration algorithms compared
to MIP and especially to LP.

While it is obvious that implicit enumeration algorithms have a computational
advantage, it is good to end with several caveats. First, for certain other pur-
poses, including duality analysis and sensitivity analysis, the use of LP has obvious
advantages compared to MIP and implicit enumeration. For instance, imagine one
would be computing a credit-constrained profit model (e.g., a nonconvex version of

hEor comparison, in the convex case the LP model for computing TE only needs K + 1 decision
variables (in casu 193) and n + m + 1 slack variables (in casu 5) yielding a matrix of dimensions
6 x 198 while only K + n decision variables (in casu 195) and n +m + 1 slack variables (in casu 5)
are required for computing the cost function leading to matrix of dimension 6 x 200.
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Blancard et al. (2006)), then it would be useful not only to know whether the credit-
constraint is binding or not, but also to obtain its shadow price when binding. It
remains to be seen whether some of these methods can be judiciously combined to
speed up the LP approach to answer these type of questions.

Second, for practitioners needing specialized versions of the above basic non-
convex production and cost models (for example, a short-run or sub-vector radial
input efficiency measure defined on some of the input dimensions solely) or being
interested in a non-standard type of production or economic model (e.g., non-radial
efficiency measures, or the nonconvex version of the credit-constrained profit model
mentioned supra), these needs are unlikely covered in available software packages.
Therefore, it may be easier to program an LP in a standard optimization software
rather than derive the implicit enumeration algorithm required. To neutralize this
convenience advantage of LP, it would be necessary to come up with a general for-
mulation of these implicit enumeration algorithms covering a wide variety of special
production and cost models (e.g., apart from different returns to scale, also different
measurement orientations of efficiency, different sub-vector cases, revenue and profit
functions in addition to cost functions, etc): such general formulation is currently
lacking. This challenge also ignores the methodological refinements and variations
listed in Sec. 1.

Third, while there is some literature deriving certain visualizations of convex
technologies (for instance, isoquants in input space, transformation curves in out-
put space, etc.) using parametric programming (Krivonozhko et al., 2004), no such
literature exists for the nonconvex case. Obviously, it is straightforward to transpose
these existing parametric programming approaches to the LP approach to noncon-
vex production and cost models. It remains an open question whether one can come
up with enumeration algorithms facilitating this job.

Finally, our discussion has so far been limited to static production models solely.
Recently, Soleimani-damaneh (2013) introduced the first nonconvex dynamic cost
function model around in the literature. He manages to rely on a recursive form of
implicit enumeration algorithms alone. It remains to be seen whether future devel-
opments in this specific research avenue will lead to new computational challenges
or not.

In conclusion, while enumeration algorithms may have obvious advantages com-
pared to LP and other optimization methods, it remains to be seen whether enumer-
ation algorithms can be extended beyond the standard computations of efficiency
and cost functions in nonconvex production and cost models. This constitutes a
major challenge for future research.
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